4.7 Article

High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications

Journal

CHEMICAL GEOLOGY
Volume 395, Issue -, Pages 176-195

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2014.12.013

Keywords

Stable isotopes; Magnesium; Silicon; Iron; Core formation

Funding

  1. National Science Foundation [EAR-0711411]
  2. NASA [NNX10A175G]
  3. NSF [EAR-1321858]
  4. Division Of Earth Sciences
  5. Directorate For Geosciences [1321858] Funding Source: National Science Foundation

Ask authors/readers for more resources

High-temperature partitioning of the stable isotopes of rock-forming elements like Mg, Si, Fe, Ni and others are useful new tools in geochemistry and cosmochemistry. Understanding the fundamental driving forces for equilibrium inter-mineral fractionation comes from basic crystal chemistry and is invaluable for interpreting data from natural systems. Both charge and coordination number are key factors affecting bond length and bond stiffness and therefore the relative proclivity of a mineral phase for concentrating heavy or light isotopes. Quantitative interpretation of the plethora of new data relies on refinements of equilibrium fractionation factors through a feedback between crystal chemical reasoning, ab initio predictions, experiments, and analyses of well-characterized natural samples. This multifaceted approach is leading to a rapid rate of discovery using non-traditional stable isotopes in high temperature systems. For example, open-system mass transfer in the mantle is becoming increasingly evident from departures from equilibrium Mg and Fe isotope ratio partitioning between minerals, and differences in isotope ratios between bulk silicate Earth and meteorites are elucidating the conditions for Earth's core formation quantitatively. These applications rely critically on accurate equilibrium fractionation factors. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available