4.7 Article

Benchmarking quantum logic operations relative to thresholds for fault tolerance

Journal

NPJ QUANTUM INFORMATION
Volume 9, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41534-023-00764-y

Keywords

-

Ask authors/readers for more resources

It is found that under randomized compiling (RC), the errors of quantum gates can be accurately described by a stochastic Pauli noise model without coherent errors, and spatially correlated coherent errors and non-Markovian errors are strongly suppressed. The average and worst-case error rates are equal for randomly compiled gates, and the maximum worst-case error for the gate set is measured to be 0.0197(3) using gate set tomography.
Contemporary methods for benchmarking noisy quantum processors typically measure average error rates or process infidelities. However, thresholds for fault-tolerant quantum error correction are given in terms of worst-case error rates-defined via the diamond norm-which can differ from average error rates by orders of magnitude. One method for resolving this discrepancy is to randomize the physical implementation of quantum gates, using techniques like randomized compiling (RC). In this work, we use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor. We find that, under RC, gate errors are accurately described by a stochastic Pauli noise model without coherent errors, and that spatially correlated coherent errors and non-Markovian errors are strongly suppressed. We further show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set. Our results show that randomized benchmarks are a viable route to both verifying that a quantum processor's error rates are below a fault-tolerance threshold, and to bounding the failure rates of near-term algorithms, if-and only if-gates are implemented via randomization methods which tailor noise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available