4.7 Article

Quantum metrology with quantum Wheatstone bridge composed of Bose systems

Journal

RESULTS IN PHYSICS
Volume 50, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.rinp.2023.106575

Keywords

Quantum Wheatstone bridge; Quantum metrology; Homodyne detection; Bridge balance

Ask authors/readers for more resources

The quantum version of a special classical Wheatstone bridge has been proposed, which is built with a boundary-driven spin system. We introduce a quantum Wheatstone bridge consisting of Bose systems, capable of simulating the general classical Wheatstone bridge. Balancing the quantum Wheatstone bridge can result in obtaining an unknown coupling, determined through homodyne detection. The precision of measurement is optimal when the quantum Wheatstone bridge is balanced, as shown by calculating the quantum Fisher information. Additionally, homodyne detection is an effective measurement method in low-temperature environments.
The quantum version of a special classical Wheatstone bridge built with a boundary-driven spin system has recently been proposed. We propose a quantum Wheatstone bridge consisting of Bose systems, which can simulate the general classical Wheatstone bridge. Unknown coupling can be obtained when the quantum Wheatstone bridge is balanced, which can be determined simply by homodyne detection. When the expectation value of the homodyne detection is 0, the quantum Wheatstone bridge is unbalanced. When the expectation value of the homodyne detection is proportional to the square root of the initial number of bosons by regulating a known coupling strength, the quantum Wheatstone bridge is balanced. By calculating the quantum Fisher information, we show that the measurement precision is optimal when the quantum Wheatstone bridge is balanced. And the homodyne detection is close to the optimal measurement in the case of low-temperature baths.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available