4.7 Article

Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis

Journal

MOLECULAR METABOLISM
Volume 76, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.molmet.2023.101781

Keywords

Pro-peptides; Mass spectrometry; Obesity; Point mutation; VGF; Granins

Ask authors/readers for more resources

This study developed a mouse model with selective knockout of TLQP-21 neuropeptide and provided multiple independent validations. The DTLQP-21 mice showed no gross behavioral and metabolic abnormalities but exhibited a unique metabolic phenotype characterized by temperature-dependent resistance to diet-induced obesity and activation of brown adipose tissue. This research is important for understanding the necessary role of TLQP-21 in physiology and disease, as well as testing novel antibodies or immunoassays targeting TLQP-21.
Objective: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Methods: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (DTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21/A).Results: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. DTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.Conclusions: The DTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.m 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available