4.6 Article

Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study

Journal

FRONTIERS IN NEUROLOGY
Volume 14, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fneur.2023.1232436

Keywords

mirror neuron; functional near-infrared spectroscopy; neuromuscular electrical stimulation; action observation; brain-computer interface

Ask authors/readers for more resources

The study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. The results showed that NMES combined with action observation, execution, and imitation activated the MNS, and the synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The observed fNIRS signal patterns could be utilized for the development of brain-computer interface and neurofeedback therapy rehabilitation devices.
BackgroundThe mirror neuron system (MNS) plays a key role in the neural mechanism underlying motor learning and neural plasticity. Action observation (AO), action execution (AE), and a combination of both, known as action imitation (AI), are the most commonly used rehabilitation strategies based on MNS. It is possible to enhance the cortical activation area and amplitude by combining traditional neuromuscular electrical stimulation (NMES) with other top-down and active rehabilitation strategies based on the MNS theory. ObjectiveThis study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. In addition, the study aimed to assess the feasibility of these three novel rehabilitative treatments in order to provide insights and evidence for the design, implementation, and application of brain-computer interfaces. MethodsA total of 70 healthy adults were recruited from July 2022 to February 2023, and 66 of them were finally included in the analysis. The cortical activation patterns during NMES+AO, NMES+AE, and NMES+AI were detected using the functional Near-Infrared Spectroscopy (fNIRS) technique. The action to be observed, executed, or imitated was right wrist and hand extension, and two square-shaped NMES electrodes were placed on the right extensor digitorum communis. A block design was adopted to evaluate the activation intensity of the left MNS brain regions. ResultsGeneral linear model results showed that compared with the control condition, the number of channels significantly activated (P-FDR < 0.05) in the NMES+AO, NMES+AE, and NMES+AI conditions were 3, 9, and 9, respectively. Region of interest (ROI) analysis showed that 2 ROIs were significantly activated (P-FDR < 0.05) in the NMES+AO condition, including BA6 and BA44; 5 ROIs were significantly activated in the NMES+AE condition, including BA6, BA40, BA44, BA45, and BA46; and 6 ROIs were significantly activated in the NMES+AI condition, including BA6, BA7, BA40, BA44, BA45, and BA46. ConclusionThe MNS was activated during neuromuscular electrical stimulation combined with an AO, AE, and AI intervention. The synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The fNIRS signal patterns observed in this study could be used to develop brain-computer interface and neurofeedback therapy rehabilitation devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available