4.6 Article

Torque Vectoring Control Strategies Comparison for Hybrid Vehicles with Two Rear Electric Motors

Journal

APPLIED SCIENCES-BASEL
Volume 13, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/app13148109

Keywords

hybrid electric vehicles; vehicle dynamics; in-wheel motors; torque vectoring; direct yaw control; PID; LQR; sliding mode control

Ask authors/readers for more resources

This paper presents a methodology for designing and evaluating torque vectoring systems in hybrid electric vehicles. Comparing different controllers helps in making design choices. Electrification is a major trend in the automotive industry, and in-wheel electric motors are promising technologies yet to be fully developed. The paper analyzes different design possibilities for a torque vectoring system in a compact front-wheel drive hybrid electric vehicle with two rear axle wheel-integrated electric motors. A 14 degrees of freedom vehicle model is used to simulate the nonlinearities of vehicle dynamics and different control methods are compared. Chattering reduction strategies are developed to improve the performance of sliding mode controllers, and a performance factor is used to compare control systems.
Featured Application The methodology presented in this paper can be applied to the design and evaluation of torque vectoring systems in hybrid electric vehicles. Comparison of different controllers is helpful in making design choices in these applications. In today's automotive industry, electrification is a major trend. In-wheel electric motors are among the most promising technologies yet to be fully developed. Indeed, the presence of multiple in-wheel motors acting as independent actuators allows for the implementation of innovative active systems and control strategies. This paper analyzes different design possibilities for a torque vectoring system applied to an originally compact front-wheel drive hybrid electric vehicle with one internal combustion engine for the front axle and two added electric motors integrated in the wheels of the rear axle. A 14 degrees of freedom vehicle model is present o accurately reproduce the nonlinearities of vehicle dynamic phenomena and exploited to obtain high-fidelity numerical simulation results. Different control methods are compared, a PID, an LQR, and four different sliding mode control strategies. All controllers achieve sufficiently good results in terms of lateral dynamics compared with the basic hybrid version. The various aspects and features of the different strategies are analyzed and discussed. Chattering reduction strategies are developed to improve the performance of sliding mode controllers. For a complete overview, control systems are compared using a performance factor that weighs control accuracy and effort in different driving maneuvers, i.e., ramp and step steering maneuvers performed under quite different conditions ranging up to the limits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available