4.6 Article

Dynamic Measuring Method of Laser Beam Incident Angle for Laser Doppler Vibrometer

Journal

APPLIED SCIENCES-BASEL
Volume 13, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/app131810396

Keywords

laser Doppler vibrometer (LDV); laser beam; incident angle; dynamic measuring; error analysis

Ask authors/readers for more resources

This paper proposes a novel high-precision dynamic measuring method based on the measuring principle of LDV, and constructs a compact dynamic measuring device. The laser beam incident angle is computed by simulating various tangential velocities and establishing a projection relationship. Experimental results show the feasibility of this method, and corresponding optimization measures are proposed to improve the measuring accuracy.
Accurately measuring the incident angle of the laser Doppler vibrometer (LDV) laser beam is crucial for calculating the accurate dynamic response of a target. Nonetheless, conventional measuring methods may encounter limitations due to spatial constraints. To address this issue, a novel high-precision dynamic measuring method is proposed based on the measuring principle of LDV. Furthermore, a compact dynamic measuring device is constructed to facilitate this method. The proposed method involves the simulation of various tangential velocities utilizing a high precision rotating disk system. Subsequently, the laser beam incident angle is computed based on the projection relationship established between the average value of LDV measurements and the simulated velocities. To validate the feasibility of the dynamic measuring method and the correctness of the obtained incident angle, the paper compares this angle with that obtained through a conventional laser beam measuring method and device. This paper analyzes four key factors that may affect the angle measuring results theoretically and experimentally: environmental noise, laser spot position error, roll angle, and pitch angle of the rotating disk. The results indicate that the laser spot position error and the pitch angle of the rotating disk are more influential than the other two factors. Corresponding optimization measures are also proposed to improve the measuring accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available