4.7 Article

Photocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au

Journal

APL MATERIALS
Volume 11, Issue 7, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0149955

Keywords

-

Ask authors/readers for more resources

In this study, first principles methods are used to explore the physics of charge photocurrents, spin photocurrents, and the inverse Faraday effect in antiferromagnetic Mn2Au. The emergence of large spin photocurrents and the possibility of tracking the dynamics of staggered moments during switching are predicted. It is also suggested that even a small canting in Mn2Au can give rise to colossal chiral spin photocurrents. The unique blend of prominent photocurrents in Mn2Au makes it a unique platform for advanced optospintronics applications.
Among antiferromagnetic materials, Mn2Au is one of the most intensively studied, and it serves as a very popular platform for testing various ideas related to antiferromagnetic magnetotransport and dynamics. Since recently, this material has also attracted considerable interest in the context of optical properties and optically-driven antiferromagnetic switching. In this work, we use first principles methods to explore the physics of charge photocurrents, spin photocurrents, and the inverse Faraday effect in antiferromagnetic Mn2Au. We predict the symmetry and magnitude of these effects and speculate that they can be used for tracking the dynamics of staggered moments during switching. Our calculations reveal the emergence of large photocurrents of spin in collinear Mn2Au, whose properties can be understood as a result of a non-linear optical version of the spin Hall effect, which we refer to as the photospin Hall effect, encoded into the relation between the driving charge and resulting spin photocurrents. Moreover, we suggest that even a very small canting in Mn2Au can give rise to colossal spin photocurrents that are chiral in flavor. We conclude that the combination of staggered magnetization with the structural and electronic properties of this material results in a unique blend of prominent photocurrents, which makes Mn2Au a unique platform for advanced optospintronics applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available