4.6 Article

Thickness-dependent charge transport in few-layer MoS2 field-effect transistors

Journal

NANOTECHNOLOGY
Volume 27, Issue 16, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/27/16/165203

Keywords

MoS2; field-effect transistor; metal insulator transition

Funding

  1. Laboratory Directed Research and Development award from Oak Ridge National Laboratory

Ask authors/readers for more resources

Molybdenum disulfide (MoS2) is currently under intensive study because of its exceptional optical and electrical properties in few-layer form. However, how charge transport mechanisms vary with the number of layers in MoS2 flakes remains unclear. Here, exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility. For these MoS2 FETs, measurements at both 295 K and 77 K revealed the maximum mobility for layer thicknesses between 5 layers (similar to 3.6 nm) and 10 layers (similar to 7 nm), with similar to 70 cm(2) V-1 s(-1) measured for 5 layer devices at 295 K. Temperature-dependent mobility measurements revealed that the mobility rises with increasing temperature to a maximum. This maximum occurs at increasing temperature with increasing layer thickness, possibly due to strong Coulomb scattering from charge impurities or weakened electron-phonon interactions for thicker devices. Temperature-dependent conductivity measurements for different gate voltages revealed a metal-to-insulator transition for devices thinner than 10 layers, which may enable new memory and switching applications. This study advances the understanding of fundamental charge transport mechanisms in few-layer MoS2, and indicates the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available