4.5 Article

In Situ Prediction of Metal Fatigue Life Using Frequency Change

Journal

METALS
Volume 13, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/met13101681

Keywords

remaining useful life (RUL); fatigue; thermodynamics of fatigue; fracture fatigue entropy (FFE); frequency variation

Ask authors/readers for more resources

This study introduces a reliable technique for predicting the remaining useful life of components by measuring the temperature signature when the operating frequency is rapidly changed. The approach is validated through fatigue tests on stainless steel specimens. The method allows for predicting the remaining useful life at different operating frequencies.
A reliable technique for rapid prediction of the remaining useful life (RUL) of components experiencing fatigue degradation is introduced. The approach is based on measuring the temperature signature of a component upon rapidly changing its operating frequency for a short period of time. The temperature variations caused by alterations in plastic work rate are correlated to the loading history. The efficacy of the approach is investigated by conducting a series of axial fatigue tests on stainless steel 316 specimens. The material characterization involves subjecting the material to a constant amplitude fatigue load at 4 Hz and 12 Hz frequencies. The operating frequency is temporarily adjusted to the characterization frequencies for a brief duration. During this period, the change in the slope of temperature rise is recorded. Subsequently, the operation frequency is reverted to its original state, and the remaining useful life is predicted based on the recorded data. The model provides predictions for operation frequencies of 6 Hz, 8 Hz, and 12 Hz, and notably, the error of predictions is consistently under 12% for all cases. The method allows the operator to reliably estimate the remaining usefulness for field applications without interrupting the operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available