4.5 Review

Novel Frontiers in High-Entropy Alloys

Journal

METALS
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/met13071193

Keywords

high-entropy alloys; corrosion; catalysts; nanoparticles; marine

Ask authors/readers for more resources

It is believed that high-entropy alloys (HEAs) have great potential in cryogenic and aerospace applications. However, there is still much to be explored due to the vast design space available for HEAs. This review focuses on four less addressed areas of HEA applications, including joining technologies, HEA nanomaterial synthesis, catalysis, and marine applications. The performance of HEAs as filler metals and base metals in welding and brazing is discussed, along with various methods for synthesizing HEA nanomaterials and their applications in catalysis and energy storage. Furthermore, the corrosion resistance and antifouling properties of HEAs make them intriguing materials for marine applications.
There is little doubt that there is significant potential for high-entropy alloys (HEAs) in cryogenic and aerospace applications. However, given the immense design space for HEAs, there is much more to be explored. This review will focus on four areas of application for HEAs that receive less attention. These focus areas include joining technologies, HEA nanomaterial synthesis, catalysis, and marine applications. The performance of HEAs as a filler metal for welding and brazing as well as their performance as a welded/brazed base metal will be discussed. Various methods for synthesizing HEA nanomaterials are reviewed with specifically highlighted applications in catalysis and energy storage. HEA catalysts, in particular, will be discussed in detail regarding their effectiveness, selectiveness, and stability. Marine applications are explored given the inherent corrosion resistance of HEAs as well as superior antifouling properties that make HEAs an intriguing marine-ready material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available