4.6 Article

A CRISPR Screen Identifies the E3 Ubiquitin Ligase Rfwd2 as a Negative Regulator of Glucose Uptake in Brown Adipocytes

Journal

GENES
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/genes14101865

Keywords

brown adipose; adipocyte; glucose

Ask authors/readers for more resources

This study reveals the complexity of genetic regulation of brown adipogenesis and glucose metabolism. The E3-ubiquitin ligase Rfwd2 was found to suppress glucose uptake in brown adipocytes.
Brown adipose tissue activation increases energy expenditure and has been shown to improve glucose tolerance, making it a promising target for the treatment of obesity and type 2 diabetes. Brown adipocytes differentiate into cells with multilocular lipid droplets, which can efficiently absorb and oxidize glucose; however, the mechanisms regulating these processes are not completely understood. We conducted a genome-wide loss-of-function screen using a CRISPR-based approach to identify genes that promote or inhibit adipogenesis and glucose uptake in brown adipocytes. We validated genes that negatively or positively regulated these pathways and verified that the E3-ubiquitin ligase Rfwd2 suppressed brown adipocyte glucose uptake. Brown adipocytes with CRISPR-targeted Rfwd2 deletion showed an altered proteomic landscape and increased basal, as well as insulin-stimulated, glucose uptake. These data reveal the complexity of genetic regulation of brown adipogenesis and glucose metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available