4.7 Article

SaeR as a novel target for antivirulence therapy against Staphylococcus aureus

Journal

EMERGING MICROBES & INFECTIONS
Volume 12, Issue 2, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/22221751.2023.2254415

Keywords

S. aureus; SaeR; virulence; inhibitor; target

Ask authors/readers for more resources

This study identified the first inhibitor of SaeR, a protein involved in regulating virulence factors in Staphylococcus aureus. The inhibitor, named HR3744, showed in vitro and in vivo effectiveness against S. aureus infections. The findings suggest that SaeR could be a potential target for the development of antivirulence drugs.
Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilizing a GFP-Lux dual reporter system driven by saeP1 promoter. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and haemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain. When SaeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four times more potent than HR3744 and demonstrated identical antivirulence properties and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence properties, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available