4.5 Article

Structural, optical and photovoltaic properties of V2O5/ZnO and reduced graphene oxide (rGO)-V2O5/ZnO nanocomposite photoanodes for dye-sensitized solar cells

Journal

CARBON LETTERS
Volume -, Issue -, Pages -

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s42823-023-00608-x

Keywords

ZnO; Nanocomposites; Graphene oxide; XPS spectrum; Dye-sensitized solar cells

Ask authors/readers for more resources

This study investigates the use of V2O5/ZnO and rGO-V2O5/ZnO nanocomposites as photoanodes to improve the power conversion efficiency of dye-sensitized solar cells. The structural and electrical characteristics of these nanocomposites are analyzed, and it is found that they can significantly enhance the performance of the solar cells.
Photoanode optimization is a fascinating technique for enlightening the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this present study, V2O5/ZnO and reduced graphene oxide (rGO)-V2O5/ZnO nanocomposites (NCs) were prepared by the solid-state technique and used as photoanodes for DSSCs. A wet chemical technique was implemented to generate individual V(2)O(5)and ZnO nanoparticles (NPs). The structural characteristics of the as-synthesized NCs were investigated and confirmed using powder X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) analysis. The average crystallite size (D) of the as-synthesized V2O5/ZnO and rGO-V2O5/ZnO NCs was determined by Debye-Scherer's formula. The bandgap (eV) energy was calculated from Tauc's plots, and the bonding nature and detection of the excitation of electrons were investigated using the Ultra violet (UV) visible spectra, Fourier Transform infrared (FTIR) and photoluminescence (PL) spectral analysis. Electrical studies like Hall effect analysis and the Nyquist plots are also described. The V2O5/ZnO and rGO-V2O5/ZnO NCs based DSSCs exhibited 0.64% and 1.27% of PCE and the short circuit current densities and open circuit voltages improved from 7.10 to 11.28 mA/cm(2) and from 0.57 to 0.68 V, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available