4.5 Article

Electrospun and electropolymerized carbon nanofiber-polyaniline-Cu material as a hole transport material for organic solar cells

Journal

CARBON LETTERS
Volume -, Issue -, Pages -

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s42823-023-00578-0

Keywords

Electropolymerization; Polyaniline; Electrospinning; Hole transport layer

Ask authors/readers for more resources

Carbon nanofibers (CNFs) are used in the construction of energy devices, especially organic solar cells. They are created through the electrospinning process using polyacrylonitrile (PAN) and then carbonized. The CNFs are coated on stainless steel plates and their electrical conductivity is evaluated using cyclic voltammetry. Among them, the CNF-PANI-Cu electrode shows the highest conductivity of 3.0 mA. Furthermore, PANI, CNF-PANI, and CNF-PANI-Cu are characterized for their optical and electrical properties for organic solar cell applications.
Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF-Cu, PANI, PANI-Cu, CNF-PANI, and CNF-PANI-Cu electrode materials' electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF-PANI-Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF-PANI, and CNF-PANI-Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT-IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available