4.6 Article

Predicting the Compressive Strength of Green Concrete at Various Temperature Ranges Using Different Soft Computing Techniques

Journal

SUSTAINABILITY
Volume 15, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/su151511907

Keywords

sustainability; concrete; ground granulated blast furnace slag (GGBFS); compressive strength; statistical analysis; modeling

Ask authors/readers for more resources

To mitigate the negative environmental effects of cement production, the construction industry is adopting eco-friendly approaches, such as using alternative and recycled materials and reducing carbon emissions in concrete production. This study focuses on investigating the factors influencing the compressive strength of concrete containing ground granulated blast furnace slag (GGBFS) at 28 days of age. Statistical modeling techniques were employed to comprehensively analyze the effects of temperature, water-to-binder ratio, GGBFS-to-binder ratio, fine aggregate, coarse aggregate, and superplasticizer on the compressive strength.
To overcome the environmental impact of cement production in concrete, the construction industry is adopting eco-friendly approaches, such as incorporating alternative and recycled materials and minimizing carbon emissions in concrete production. One such material that has gained prominence is ground granulated blast furnace slag (GGBFS). This study focuses on investigating the compressive strength of concrete at 28 days of age by examining the influences of several factors, such as temperature, water-to-binder ratio (w/b), GGBFS-to-binder ratio (GGBFS/b), fine aggregate, coarse aggregate, and superplasticizer. A statistical modeling approach was employed to comprehensively analyze these parameters and assess their impact on compressive strength. To accomplish this, the study collected and analyzed data from the literature, resulting in a dataset of 210 observations. The dataset was divided into training and testing groups, and statistical analyses were performed to assess the relationships between the input parameters and compressive strength. The correlation analysis revealed insignificant relationships between the input parameters and compressive strength, indicating that multiple factors affect strength. Different models were employed to predict compressive strength, such as linear regression, nonlinear regression, quadratic, full quadratic models, and artificial neural networks (ANN). The findings of this study contribute to a better understanding of the factors that influence the compressive strength of concrete containing GGBFS. The results underscore the importance of considering multiple parameters to predict strength accurately.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available