4.8 Article

Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells

Journal

NANOSCALE
Volume 8, Issue 23, Pages 11984-11992

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr03052a

Keywords

-

Funding

  1. Chevron Incorporation
  2. Louisiana State University (LSU)
  3. Graduate Enrichment Award from LSU

Ask authors/readers for more resources

Owing to its excellent electrocatalytic properties, cobalt disulfide (CoS2) is regarded as a promising counter electrode (CE) material for dye-sensitized solar cells (DSSCs). However, hindered by its relatively poor electrical conductivity and chemical instability, it remains a challenge to apply it into high-performance DSSCs. In this work, we have developed novel CoS2 embedded carbon nanocages as a CE in DSSCs, using ZIF-67 (zeolitic imidazolate framework 67, Co(mim)(2), mim = 2-methylimidolate) as a template. The CoS2 samples sulfurized for different time lengths are prepared through a facile solution process. It is found that the sulfurization time can be optimized to maximize the DSSC efficiency and the DSSC based on the CoS2 embedded carbon nanocages sulfurized for 4 hours exhibits the highest photovoltaic conversion efficiency (PCE) of 8.20%, higher than those of DSSCs consisting of other CoS2 CEs and Pt-based DSSC (7.88%). The significantly improved DSSC PCE is contributed by the synergic effect of inner CoS2 nanoparticles and an amorphous carbon matrix, leading to a CE with high catalytic activity, good electrical conductivity and excellent durability. This study demonstrates that the CE based on inexpensive CoS2 embedded carbon nanocages is a prospective substitute to expensive platinum and provides a new approach for commercializing high-efficiency DSSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available