4.6 Article

Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System

Journal

SUSTAINABILITY
Volume 15, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/su152015046

Keywords

electric vehicles; vehicle-to-home; electricity bill; household energy storage system; load curve

Ask authors/readers for more resources

This study proposes an energy utilization optimization strategy for charging electric vehicles in a smart home. The strategy utilizes a vehicle-to-home system and household energy storage system to improve energy utilization and reduce electricity bills. Different scenarios are examined to investigate the role of these technologies in reducing costs and smoothing the load curve.
This study investigates an energy utilization optimization strategy in a smart home for charging electric vehicles (EVs) with/without a vehicle-to-home (V2H) and/or household energy storage system (HESS) to improve household energy utilization, smooth the load profile, and reduce electricity bills. The proposed strategy detects EV arrival and departure time, establishes the priority order between EV and HESS during charge and discharge, and ensures that the EV battery state of energy at the departure time is sufficient for its travel distance. It also ensures that the EV and HESS are charged when electricity prices are low and discharged in peak hours to reduce net electricity expenditure. The proposed strategy operates in different modes to control the energy amount flowing from the grid to EV and/or HESS and the energy amount drawn from the HESS and/or EV to feed the demand to maintain the load curve level within the average limits of the daily load curve. Four different scenarios are presented to investigate the role of HESS and EV technology in reducing electricity bills and smoothing the load curve in the smart house. The results demonstrate that the proposed strategy effectively reduces electricity costs by 12%, 15%, 14%, and 17% in scenarios A, B, C, and D, respectively, and smooths the load profile. Transferring valley electricity by V2H can reduce the electricity costs better than HESS, whereas HESS is better than EV at flattening the load curve. Transferring valley electricity through both V2H and HESS gives better results in reducing electricity costs and smoothing the load curve than transferring valley electricity by HESS or V2H alone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available