4.8 Article

Wafer-scale growth of MoS2 thin films by atomic layer deposition

Journal

NANOSCALE
Volume 8, Issue 20, Pages 10792-10798

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr01346e

Keywords

-

Funding

  1. Korea Institute of Science and Technology (KIST) [2E26370]

Ask authors/readers for more resources

The wafer-scale synthesis of MoS2 layers with precise thickness controllability and excellent uniformity is essential for their application in the nanoelectronics industry. Here, we demonstrate the atomic layer deposition (ALD) of MoS2 films with Mo(CO)(6) and H2S as the Mo and S precursors, respectively. A self-limiting growth behavior is observed in the narrow ALD window of 155-175 degrees C. Long H2S feeding times are necessary to reduce the impurity contents in the films. The as-grown MoS2 films are amorphous due to the low growth temperature. Post-annealing at high temperatures under a H2S atmosphere efficiently improves the film properties including the crystallinity and chemical composition. An extremely uniform film growth is achieved even on a 4 inch SiO2/Si wafer. These results demonstrate that the current ALD process is well suited for the synthesis of MoS2 layers for application in industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available