4.8 Article

Facile synthesis of Ru-decorated Pt cubes and icosahedra as highly active electrocatalysts for methanol oxidation

Journal

NANOSCALE
Volume 8, Issue 25, Pages 12812-12818

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr03303b

Keywords

-

Funding

  1. National Science Foundation of China [51372222, 51522103]
  2. National Program for Support of Top-notch Young Professionals
  3. Fundamental Research Funds for the Central Universities
  4. thousand talents program for distinguished young scholars from the National Science Foundation of China
  5. Shanghai Jiao Tong University

Ask authors/readers for more resources

PtRu bimetallic particles are well-known commercial catalysts with promising performance for methanol oxidation. However, shape-controlled synthesis of PtRu bimetallic nanocrystals, especially for the platonic structures with {100} (e.g., cubes) or {111} facets (e.g., icosahedra) exposed towards catalysis, has met only limited success due to the different crystal structures of Pt and Ru. Here we report a facile approach to the synthesis of Ru decorated Pt bimetallic cubes and icosahedra in a mixed solvent. We found that the cubes were formed in the solvent containing N,N-dimethylmethanamide (DMF) and oleylamine (OAm) possibly due to the selective adsorption of CO on Pt{100} arising from the decomposition of DMF catalyzed by a Ru salt precursor. When hexadecane was added into the aforementioned solvent, the synthesis became a two-phase interfacial reaction due to the large difference in solvent polarity, thereby retarding the reaction kinetics and promoting the formation of the icosahedra with the composition similar to the cubes. When evaluated as catalysts towards methanol oxidation, the Ru decorated Pt icosahedra showed much better performance in terms of specific and mass activity relative to the corresponding cubes. Specifically, the Ru decorated Pt bimetallic icosahedra achieved a specific activity of 0.76 mA cm(-2) and mass activity of 74.43 mA mg(Pt)(-1), which is similar to 6.7 and 2.2 times as high as those of the carbon supported Pt7Ru nanoparticles, respectively. This enhancement can be attributed to a combination of twin-induced strain and facet effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available