4.8 Article

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Journal

NANO ENERGY
Volume 119, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2023.109052

Keywords

Electromotive force; Hybrid energy harvester; Portable device; Functional light-emitting diode; Triboelectric nanogenerator; Electromagnetic generator

Ask authors/readers for more resources

In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.
As the application range of light-emitting diode (LED) has rapidly expanded in various fields and functional LED-implanted electronic devices have deeply permeated human daily lives, research on the electrically off-grid power supply method for LEDs is being widely conducted around the world in order to further strengthen and utilize the strong points of LEDs. In this study, a shaft-shared triboelectric-electromagnetic hybrid portable en-ergy harvester (STEP) considering the electromotive force-based hybridization is proposed to drive various functional LEDs with a wide range of wavelengths using biomechanical energy. The respective roles and func-tionalities of triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in a hybrid energy harvester are experimentally and visually demonstrated by comparative investigation in parallel and series circuits. Then, based on the experimental result, the necessity of hybridization of TENG and EMG is described from the perspective of both electromotive force and current for the LED-involved devices. When the STEP operation speed is 500 rpm, the average output voltage and current of the TENG and EMG parts are experi-mentally characterized, and the average output voltage from TENG is 238 V and the average output current from EMG is 18 mA. The maximum peak powers of TENG and EMG are 1.92 and 26.7 mW when the external load resistances are 30 M omega and 400 omega, respectively. STEP is portable in size and weight, and it can be operated by human force thanks to an optimally designed gearbox. When STEP is driven by human power, it can power a variety of functional LEDs ranging from 275 to 850 nm of wavelengths, including 250 visible, 50 infrared, and dozens of UV LEDs. Given that the superior functionalities of LEDs have been validated, and that the synergistic effect through convergence with electrical grid-independent power supply technology is thought to have great potential in a variety of fields, STEP is expected to serve as a guideline for effective energy supply strategy to various functional LEDs in related fields such as lighting, engineering, security, and healthcare industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available