4.8 Article

Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

Journal

NANOSCALE
Volume 8, Issue 15, Pages 8276-8287

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr00231e

Keywords

-

Funding

  1. Department of Science and Technology, New Delhi [SR/FT/CS-136/2011, GPP 269]
  2. DST, New Delhi, India
  3. Deanship of Scientific Research at King Saud University through International Research Group [IRG-14-40]
  4. Grants-in-Aid for Scientific Research [16F16050] Funding Source: KAKEN

Ask authors/readers for more resources

Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available