4.6 Article

An Investigation into the Surface Integrity of Micro-Machined High-Speed Steel and Tungsten Carbide Cutting Tools

Journal

MICROMACHINES
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/mi14101970

Keywords

micro machining; cutting tools; tungsten carbide; high-speed steels; surface roughness

Ask authors/readers for more resources

This report highlights recent advances in surface enhancement of tungsten carbide and high-speed steel cutting tools using a novel micro-machining technique. By reducing surface roughness while maintaining hardness, this method shows potential for improving tool performance, optimizing manufacturing processes, increasing tool reliability, and minimizing waste generation.
The performance and lifespan of cutting tools are significantly influenced by their surface quality. The present report highlights recent advances in enhancing the surface characteristics of tungsten carbide and high-speed steel cutting tools using a novel micro-machining technique for polishing and edge-honing. Notably, the main aim was to reduce the surface roughness while maintaining the hardness of the materials at an optimal level. By conducting a thorough analysis of surfaces obtained using different techniques, it was found that the micro-machining method effectively decreased the surface roughness of the cutting tools the most effectively out of the techniques investigated. Significantly, the surface roughness was reduced from an initial measurement of 400 nm to an impressive value of 60 nm. No significant change in hardness was observed, which guarantees the maintenance of the mechanical properties of the cutting tools. This analysis enhances the comprehension of surface enhancement methodologies for cutting tools through the presentation of these findings. The observed decrease in surface roughness, along with the consistent hardness, exhibits potential for improving tool performance. These enhancements possess the capacity to optimise manufacturing processes, increase tool reliability, and minimise waste generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available