4.8 Article

Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties

Journal

NANOSCALE
Volume 8, Issue 36, Pages 16349-16356

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr05187a

Keywords

-

Funding

  1. NSF China [21471147]
  2. Liaoning NSF grant [2014020087]

Ask authors/readers for more resources

The rational design of nanoscale metal oxides with hollow structures and tunable porosity has stimulated tremendous attention due to their vital importance for practical applications. Here, we report the designed synthesis of ZnO/ZnCo2O4 hollow core-shell nanocages (HCSNCs) through a metal-organic framework (MOF) route. The strategy includes the synthesis of a zeolite imidazolate framework-8 (ZIF-8)/Co-Zn hydroxide core-shell nanostructure precursor and subsequent transformation to ZnO/ZnCo2O4 HCSNCs by thermal annealing of the as-prepared precursor in air. Various techniques were employed for characterization of the structure and morphology of the as-prepared ZnO/ZnCo2O4 HCSNCs. When applied as a gas sensing material, the ZnO/ZnCo2O4 HCSNCs show enhanced sensitivity to xylene when compared with ZnCo2O4 shells as well as ZnO nanocages (NCs). In addition, excellent reversibility and superior selectivity of the sensor were observed. The remarkable enhancement in the gas-sensing properties of the ZnO/ZnCo2O4 HCSNCs is attributed to their unique structure and a synergistic effect of ZnO and ZnCo2O4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available