4.7 Article

Engineering liquid metal-based nanozyme for enhancing microwave dynamic therapy in breast cancer PDX model

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12951-023-02121-9

Keywords

Liquid metal; Zeolite imidazolate framework; Nanozyme; Microwave dynamic therapy; PDX model

Ask authors/readers for more resources

The study presents a liquid metal-based nanozyme that addresses the issues of poor delivery of microwave sensitizers and tumor hypoxic microenvironment in microwave dynamic therapy (MDT). The nanozyme effectively targets tumor cells, catalyzes oxygen production, and achieves excellent MDT effect in both in vitro and PDX model experiments.
BackgroundsThe novel concept of microwave dynamic therapy (MDT) solves the problem of incomplete tumor eradication caused by non-selective heating and uneven temperature distribution of microwave thermal therapy (MWTT) in clinic, but the poor delivery of microwave sensitizer and the obstacle of tumor hypoxic microenvironment limit the effectiveness of MDT.ResultsHerein, we engineer a liquid metal-based nanozyme LM@ZIF@HA (LZH) with eutectic Gallium Indium (EGaIn) as the core, which is coated with CoNi-bimetallic zeolite imidazole framework (ZIF) and hyaluronic acid (HA). The flexibility of the liquid metal and the targeting of HA enable the nanozyme to be effectively endocytosed by tumor cells, solving the problem of poor delivery of microwave sensitizers. Due to the catalase-like activity, the nanozyme catalyze excess H2O2 in the tumor microenvironment to generate O2, alleviating the restriction of the tumor hypoxic microenvironment and promoting the production of ROS under microwave irradiation. In vitro cell experiments, the nanozyme has remarkable targeting effect, oxygen production capacity, and microwave dynamic effect, which effectively solves the defects of MDT. In the constructed patient-derived xenograft (PDX) model, the nanozyme achieves excellent MDT effect, despite the heterogeneity and complexity of the tumor model that is similar to the histological and pathological features of the patient. The tumor volume in the LZH + MW group is only about 1/20 of that in the control group, and the tumor inhibition rate is as high as 95%.ConclusionThe synthesized nanozyme effectively solves the defects of MDT, improves the targeted delivery of microwave sensitizers while regulating the hypoxic microenvironment of tumors, and achieves excellent MDT effect in the constructed PDX model, providing a new strategy for clinical cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available