4.8 Article

Synthesis and sensing properties of D5h pentagonal silver star nanoparticles

Journal

NANOSCALE
Volume 8, Issue 43, Pages 18282-18290

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr07397b

Keywords

-

Funding

  1. NSERC

Ask authors/readers for more resources

In this work, we use silver decahedral nanoparticle (AgDeNP) seeds to synthesize pentagonal silver stars (AgStDeNPs) and study the sensing properties of these nanoparticles. The regrowth process of AgStDeNPs is kinetically-controlled, so the purity of the seed NPs is critical to avoid secondary deposition in the highly non-equilibrium reduction. To control the regrowth process, surface blocking with sodium polyacrylate (PANa) was implemented. PANa moderates rough silver nanostructures typically obtained by reduction with ascorbic acid. To modulate polymer binding to the surface and thus to tune surface blocking, pH served as a key synthetic parameter. Under optimal regrowth conditions, new sliver was deposited on the highest energy sites of the decahedra - the vertices of the rims - to yield pentagonal stars. The universality of this regrowth process was established with several different seed particles. The sharpness and size of the stellated tips are tunable by the amount of added silver. Gold deposition onto AgStDeNPs enables the preparation of diverse structures with enhanced stability. Ease of transformation, e.g. rounding, of star branches opens a promising venue for enhanced SPR sensing. Also, AgStDeNPs enable femtomolar detection of 5,5-dithiobis(2-nitrobenzoic acid) in SERS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available