4.8 Article

Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy

Journal

NANOSCALE
Volume 8, Issue 20, Pages 10615-10621

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr07830j

Keywords

-

Funding

  1. Youth Innovation Promotion Association, CAS
  2. NSFC [61404127]
  3. MOST of China [2012CB932701]

Ask authors/readers for more resources

For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (T-s) window around 620 degrees C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at T-s = 620 degrees C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower T-s, which leads to an extension of T-s down to 500 degrees C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest T-s range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available