4.5 Article

Towards a UK Airborne Bioaerosol Climatology: Real-Time Monitoring Strategies for High Time Resolution Bioaerosol Classification and Quantification

Journal

ATMOSPHERE
Volume 14, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/atmos14081214

Keywords

bioaerosols; air quality; real-time detection; UV-LIF spectroscopy; machine learning

Ask authors/readers for more resources

Biological particulate matter (BioPM) is a subset of atmospheric aerosols that is poorly understood but has significant impacts on climate, air quality, and health. This study aimed to develop robust detection methodologies to assess BioPM emissions and their effects. The researchers used real-time bioaerosol spectrometers to monitor BioPM at UK peri-urban and coastal ground sites and developed a classification scheme based on laboratory training data to analyze key species of interest.
Biological particulate matter (BioPM) is a poorly constrained, ubiquitous, and diverse subset of atmospheric aerosols. They influence climate, air quality, and health via many mechanisms, spurring renewed interest in constraining their emissions to elucidate their impacts. In order to build the framework required to assess the role of BioPM in these multidisciplinary areas, it is necessary to develop robust, high time-resolution detection methodologies so that BioPM emissions can be understood and characterized. In this study, we present ambient results from intensive monitoring at UK peri-urban and coastal ground sites using high time-resolution real-time bioaerosol spectrometers. We demonstrate the utility of a new dimensional reduction-driven BioPM classification scheme, where laboratory sample training data collected at the ChAMBRe facility were used to generate broad taxonomic class time series data of key species of interest. We show the general trends of these representative classes, spanning spring, early summer, and autumn periods between 2019 and 2021. Diurnal behaviors and meteorological relationships were investigated and contextualized; a key result arising from this study was the demonstration of rainfall-induced enhancement of nighttime Penicillium-like aerosol, where rainfall crucially only acts to enhance the quantity emitted without significantly influencing the early morning timing of peak spore liberation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available