4.4 Article

Impact of drought and salt stress on galactinol and raffinose family oligosaccharides in common bean (Phaseolus vulgaris)

Journal

AOB PLANTS
Volume 15, Issue 4, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aobpla/plad038

Keywords

Abiotic stress; drought; Fabaceae; galactinol; RFO; salinity; stress tolerance

Ask authors/readers for more resources

Due to climate change, farmers will face more extreme weather conditions and hence will need crops that are better adapted to these challenges. This study presents new insights into the role of raffinose family oligosaccharides (RFOs) as a resilience mechanism against environmental stress in common bean, particularly focusing on galactinol and RFOs in common beans exposed to drought and salt stress conditions.
Due to climate change, farmers will face more extreme weather conditions and hence will need crops that are better adapted to these challenges. The raffinose family oligosaccharides (RFOs) could play a role in the tolerance of crops towards abiotic stress. To investigate this, we determined for the first time the importance of galactinol and RFOs in the roots and leaves of common bean under drought and salt stress conditions. Initially, the physiological characteristics of common bean under agronomically relevant abiotic stress conditions were investigated by measuring the growth rate, transpiration rate, chlorophyll concentration and membrane stability, allowing to establish relevant sampling points. Subsequently, the differential gene expression profiles of the galactinol and RFO biosynthetic genes and the amount of galactinol and RFO molecules were measured in the primary leaves and roots of Phaseolus vulgaris cv. CIAP7247F at these sampling points, using RT-qPCR and HPAEC-PAD, respectively. Under drought stress, the genes galactinol synthase 1, galactinol synthase 3 and stachyose synthase were significantly upregulated in the leaves and had a high transcript level in comparison with the other galactinol and RFO biosynthetic genes. This was in accordance with the significantly higher amount of galactinol and raffinose detected in the leaves. Under salt stress, raffinose was also present in a significantly higher quantity in the leaves. In the roots, transcript levels of the RFO biosynthetic genes were generally low and no galactinol, raffinose or stachyose could be detected. These results suggest that in the leaves, both galactinol and raffinose could play a role in the protection of common bean against abiotic stresses. Especially, the isoform galactinol synthase 3 could have a specific role during drought stress and forms an interesting candidate to improve the abiotic stress resistance of common bean or other plant species. Due to climate change, farmers will face more extreme weather conditions and hence will need crops that are better adapted to these challenges. This study presents new insights into the role of raffinose family oligosaccharides (RFOs) as a resilience mechanism against environmental stress in common bean. This study particularly focuses on galactinol and RFOs in common beans exposed to drought and salt stress conditions. The findings indicate that specific RFO biosynthesis-related genes were significantly upregulated in leaves, coinciding with increased amounts of galactinol and raffinose. No similar patterns were observed in the roots. This points to a potential protective role for galactinol and raffinose in bean leaves against environmental stress. Notably, the isoform galactinol synthase 3 could play a unique role in drought stress resistance, presenting a promising candidate for enhancing climate resilience in common bean or other plant species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available