4.6 Article

Cleansing Water: Harnessing Trimetallic Nanoparticles in Sunlight to Degrade Methylene Blue Dye, Aiding Aquatic Contaminant Cleanup

Journal

WATER
Volume 15, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/w15193404

Keywords

methylene blue dye; trimetallic nanoparticles; photocatalyst; photodegradation; irradiations; water

Ask authors/readers for more resources

The utilization of trimetallic nanoparticles shows promising potential for addressing the pollution caused by synthetic dyes in industrial water sources. These nanoparticles demonstrate remarkable degradation abilities when exposed to direct sunlight, offering a solution for color-related pollution in aquatic ecosystems. The study also examines the regeneration potential of the catalyst and identifies optimal operating conditions.
The contamination of industrial water sources with synthetic dyes, such as methylene blue (MB), remains a persistent environmental concern, demanding effective remediation techniques. In response, this research centers on the utilization of trimetallic nanoparticles (TMNPs) composed of Fe-Ni-Cr, Fe-Ni-Cd and Fe-Ni-Cu as a promising solution to address color-related pollution in aquatic ecosystems. These nanoparticles were synthesized using the wet chemical precipitation method and rigorously characterized using Fourier transform infrared (FT-IR), energy-dispersive X-rays (EDX), and scanning electron microscopy (SEM). Armed with these trimetallic nanoparticles, our primary objective was to harness their photocatalytic prowess when exposed to direct sunlight in aqueous environments for the degradation of MB. The progress of photodegradation was meticulously monitored using a reliable visible spectrophotometer, providing insights into the degradation kinetics. Remarkably, within just six hours of solar irradiation, the TMNPs exhibited a remarkable capacity to degrade MB, achieving an impressive degradation rate ranging from 77.5% to 79.4%. In our relentless pursuit of optimization, we conducted a comprehensive examination of various parameters including catalyst dosage, dye dosage, and pH levels, focusing specifically on the Fe-Ni-Cr TMNPs. Through systematic experimentation, a trifecta of optimal conditions emerged: a pH level of 10 (resulting in a 79.35% degradation after 1.5 h), a catalyst amount of 0.005 g (yielding 43.5% degradation after 1.5 h), and a dye concentration of 40.0 ppm (culminating in a 42.54% degradation after 1.5 h). The study also extended its scope to explore the regeneration potential of the catalyst, shedding light on its sustainability in long-term applications. Amidst the vibrant interplay of color and water, TMNPs emerged as a symbol of optimism, offering a promising avenue for the removal of synthetic dyes from the water system. With each experiment and investigation, we inch closer to realizing clearer waters and brighter environmental horizons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available