4.6 Article

Sea Level Rise-Induced Transition from Rare Fluvial Extremes to Chronic and Compound Floods

Journal

WATER
Volume 15, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/w15142671

Keywords

high-tide flooding; fluvial flooding; climate change; sea level rise; compound flooding

Ask authors/readers for more resources

Flooding along U.S. coastlines is increasing due to the combined effects of fluvial and coastal flood sources and sea level rise (SLR). However, the impact of SLR on flood drivers and compounding is still not well understood. This study focuses on a flood-prone neighborhood in Philadelphia to investigate the role of SLR in inducing high-tide flooding (HTF) and compound flooding. The results show that SLR can significantly increase the frequency and intensity of flooding in the future.
Flooding is becoming more frequent along U.S. coastlines due to the rising impacts of fluvial and coastal flood sources, as well as their compound effects. However, we have a limited understanding of mechanisms whereby sea level rise (SLR) changes flood drivers and contributes to flood compounding. Additionally, flood mitigation studies for fluvial floodplains near tidal water bodies often overlook the potential future contribution of coastal water levels. This study investigates the role of SLR in inducing high-tide flooding (HTF) and compound flooding in a neighborhood that lies on a fluvial floodplain. Eastwick, Philadelphia, is a flood-prone neighborhood that lies on the confluence of two flashy, small tributaries of the tidal Delaware River. We develop a combined 1D-2D HEC-RAS fluvial-coastal flood model and demonstrate the model's accuracy for low-discharge tidal conditions and the extreme discharge conditions of tropical Cyclone (TC) Isaias (2020) (e.g., Root Mean Square Error 0.08 and 0.13 m, respectively). Simulations show that Eastwick may experience SLR-induced HTF as soon as the 2060s, and the flood extent (34.4%) could become as bad as present-day extreme event flooding (30.7% during TC Isaias) as soon as the 2080s (based on 95th percentile SLR projections). Simulations of Isaias flooding with SLR also indicate a trend toward compounding of extreme fluvial flooding. In both cases the coastal flood water enters Eastwick through a different pathway, over a land area not presently included in some fluvial flood models. Our results show that SLR will become an important contributor to future flooding even in fluvial floodplains near tidal water bodies and may require development of compound flood models that can capture new flood pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available