4.8 Article

A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes

Journal

NANOSCALE
Volume 8, Issue 7, Pages 4227-4235

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr09145d

Keywords

-

Funding

  1. National Basic Research Program of China [2014CB931700]
  2. National Natural Science Foundation of China [91233203]
  3. State Key Laboratory of Optoelectronic Materials and Technologies

Ask authors/readers for more resources

Flexible and transparent supercapacitors, as advanced energy storage devices, are essential for the development of innovative wearable electronics because of their unique optical and mechanical qualities. However, all previous designs are based on carbon-based nanostructures like carbon nanotubes and graphene, and these devices usually have poor or short cycling lives. Here, we demonstrate a high-performance, flexible, transparent, and super-long-life supercapacitor made from ultrafine Co3O4 nanocrystals synthesized using a novel process involving laser ablation in liquid. The fabricated flexible and transparent pseudocapacitor exhibits a high capacitance of 177 F g(-1) on a mass basis and 6.03 mF cm(-2) based on the area of the active material at a scan rate of 1 mV s(-1), as well as a super-long cycling life with 100% retention rate after 20 000 cycles. An optical transmittance of up to 51% at a wavelength of 550 nm is achieved, and there are not any obvious changes in the specific capacitance after bending from 0 degrees to 150 degrees, even after bending over 100 times. The integrated electrochemical performance of the Co3O4-based supercapacitor is greatly superior to that of the carbon-based ones reported to date. These findings open the door to applications of transition metal oxides as advanced electrode materials in flexible and transparent pseudocapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available