4.7 Article

A CatBoost-Based Model for the Intensity Detection of Tropical Cyclones over the Western North Pacific Based on Satellite Cloud Images

Journal

REMOTE SENSING
Volume 15, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/rs15143510

Keywords

tropical cyclone intensity detecting; deep learning; satellite cloud image

Ask authors/readers for more resources

This study developed a CatBoost-based intelligent tropical cyclone intensity-detecting model using FY-2F and FY-2G CTBT data and CMA-BST best-track data. Compared to previous studies using pure CNN models, the CatBoost-based model exhibited better skills in detecting TC intensity, with an RMSE of 3.74 m/s.
A CatBoost-based intelligent tropical cyclone (TC) intensity-detecting model was built to quantify the intensity of TCs over the Western North Pacific (WNP) with the cloud-top brightness temperature (CTBT) data of Fengyun-2F (FY-2F) and Fengyun-2G (FY-2G) and the best-track data of the China Meteorological Administration (CMA-BST) in recent years (2015-2018). The CatBoost-based model was featured with the greedy strategy of combination, the ordering principle in optimizing the possible gradient bias and prediction shift problems, and the oblivious tree in fast scoring. Compared with the previous studies based on the pure convolutional neural network (CNN) models, the CatBoost-based model exhibited better skills in detecting the TC intensity with the root mean square error (RMSE) of 3.74 m s(-1). In addition to the three mentioned model features, there are also two reasons for the model's design. On one hand, the CatBoost-based model used the method of introducing prior physical factors (e.g., the structure and shape of the cloud, deep convections, and background fields) into its training process. On the other hand, the CatBoost-based model expanded the dataset size from 2342 to 13,471 samples through hourly interpolations of the original dataset. Furthermore, this paper investigated the errors of this model in detecting the different categories of TC intensity. The results showed that the deep learning-based TC intensity-detecting model proposed in this paper has systematic biases, namely, the overestimation (underestimation) of intensities in TCs which were weaker (stronger) than at the typhoon level, and the errors of the model in detecting weaker (stronger) TCs were smaller (larger). This implies that more factors than the CTBT should be included to further reduce the errors in detecting strong TCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available