4.7 Article

Hierarchical Feature Association and Global Correction Network for Change Detection

Journal

REMOTE SENSING
Volume 15, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/rs15174141

Keywords

change detection (CD); semantic association; feature reuse; global information; optical satellite images

Ask authors/readers for more resources

This paper proposes a hierarchical feature association and global correction network (HFA-GCN) for change detection, aiming to address the issues of feature association and network accuracy in deep learning methods. Experiments show that the proposed method outperforms existing change detection models on publicly available databases.
Optical satellite image change detection has attracted extensive research due to its comprehensive application in earth observation. Recently, deep learning (DL)-based methods have become dominant in change detection due to their outstanding performance. Remote sensing (RS) images contain different sizes of ground objects, so the information at different scales is crucial for change detection. However, the existing DL-based methods only employ summation or concatenation to aggregate several layers of features, lacking the semantic association of different layers. On the other hand, the UNet-like backbone is favored by deep learning algorithms, but the gradual downscaling and upscaling operation in the mainstream UNet-like backbone has the problem of misalignment, which further affects the accuracy of change detection. In this paper, we innovatively propose a hierarchical feature association and global correction network (HFA-GCN) for change detection. Specifically, a hierarchical feature association module is meticulously designed to model the correlation relationship among different scale features due to the redundant but complementary information among them. Moreover, a global correction module on Transformer is proposed to alleviate the feature misalignment in the UNet-like backbone, which, through feature reuse, extracts global information to reduce false alarms and missed alarms. Experiments were conducted on several publicly available databases, and the experimental results show the proposed method is superior to the existing state-of-the-art change detection models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available