4.7 Article

Evaluation of Polymer Gel Electrolytes for Use in MnO2 Symmetric Flexible Electrochemical Supercapacitors

Journal

POLYMERS
Volume 15, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/polym15163438

Keywords

flexible; electrochemical supercapacitor; polymer gel electrolyte; deep eutectic solvent; Mn oxide

Ask authors/readers for more resources

Flexible electrochemical supercapacitors (FESCs) are innovative energy storage systems characterized by stable performance, long cycle life, and portability/foldability. This study investigates deep eutectic solvent (DES)-based polymer gel systems as crucial components for FESCs, showing cost-effective accessibility, simple synthesis, excellent biocompatibility, and exceptional thermal and electrochemical stability. The use of a unique ion-transport process enhances the overall electrochemical performance of the polymer gel electrolyte.
Flexible electrochemical supercapacitors (FESCs) are emerging as innovative energy storage systems, characterized by their stable performance, long cycle life, and portability/foldability. Crucial components of FESCs, such as electrodes and efficient electrolytes, have become the focus of extensive research. Herein, we examine deep eutectic solvent (DES)-based polymer gel systems for their cost-effective accessibility, simple synthesis, excellent biocompatibility, and exceptional thermal and electrochemical stability. We used a mixture a DES, LiClO4-2-Oxazolidinone as the electroactive species, and a polymer, either polyvinyl alcohol (PVA) or polyacrylamide (PAAM) as a redox additive/plasticizer. This combination facilitates a unique ion-transport process, enhancing the overall electrochemical performance of the polymer gel electrolyte. We manufactured and used LiClO4-2-Oxazolidinone (LO), polyvinyl alcohol-LiClO4-2-Oxazolidinone (PVA-LO), and polyacrylamide-LiClO4-2-Oxazolidinone (PAAM-LO) electrolytes to synthesize an MnO2 symmetric FESC. To evaluate their performance, we analyzed the MnO2 symmetric FESC using various electrolytes with cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The FESC featuring the PVA-LO electrolyte demonstrated superior electrochemical and mechanical performances. This solid-state MnO2 symmetric FESC exhibited a specific capacitance of 121.6 F/g within a potential window of 2.4 V. Due to the excellent ionic conductivity and the wide electrochemical operating voltage range of the PVA-LO electrolyte, a high energy density of 97.3 Wh/kg at 1200 W/kg, and a long-lasting energy storage system (89.7% capacitance retention after 5000 cycles of GCD at 2 A/g) are feasibly achieved. For practical applications, we employed the MnO2 symmetric FESCs with the PVA-LO electrolyte to power a digital watch and a light-emitting diode, further demonstrating their real-world utility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available