4.7 Article

Textured Polyester Fiber in Three-Dimensional (3D) Carpet Structure Application: Experimental Characterizations under Compression-Bending-Abrasion-Rubbing Loading

Journal

POLYMERS
Volume 15, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/polym15143006

Keywords

3D carpet structure; textured polyester fiber; static loading; abrasion; rubbing; regression model

Ask authors/readers for more resources

This study used textured polyester fiber as pile yarn in three-dimensional woven carpet structures and investigated the properties of the developed polyester carpets under various mechanical loading. Regression models were proposed to explain the relationships between carpet pile height and density. The study revealed that the bending rigidity and curvature of dry and wet polyester pile fiber carpets were influenced by pile height and pile density. The findings have practical implications for polyester carpet designers and three-dimensional dry or impregnate polyester fiber-based preform designers.
In this article, textured polyester fiber was used as pile yarn in three-dimensional woven carpet structures. The properties of developed polyester carpets under various mechanical loading were studied. A statistical method was used to analyze the experimental data. Regression models were proposed to explain the relationships between carpet pile height and density. The study showed that the bending rigidity and curvature of dry and wet polyester pile fiber carpets were influenced by pile height and pile density (indirectly weft density) in that the downward concave large bending curvature was obtained from very dense carpet structures. In addition, the average dry bending rigidity of the carpet was over eight times higher than the average wet bending rigidity of the carpet. The thickness loss (%) and resilience (%) for each recovery period of various polyester carpets were proportional depending on the pile density. It was broadly decreased when the pile density was increased due to the compression load carrying capacity per polyester fiber knot, which was higher in carpets having dense knots compared to sparse knots per area. On the other hand, the polyester pile density and height largely affected the carpet mass losses (%) of all textured polyester carpets under an abrasion load. The number of strokes received after completely fractured polyester pile yarns during a rubbing test were increased when the pile heights for each pile density were increased. Findings from the study can be useful for polyester carpet designers and three-dimensional dry or impregnate polyester fiber-based preform designers in particularly complex shape molding part manufacturing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available