4.7 Article

Reverse Micellar Dyeing of Cotton Fabric with Reactive Dye Using Biodegradable Non-Ionic Surfactant as Nanoscale Carrier: An Optimisation Study by One-Factor-at-One-Time Approach

Journal

POLYMERS
Volume 15, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/polym15204175

Keywords

Tergitol surfactant; secondary alcohol ethoxylate; cotton fabric; reactive dyes; non-aqueous dyeing; reverse micelle; octane; salt-free

Ask authors/readers for more resources

This study investigates the feasibility of using biodegradable SAE non-ionic surfactant as a building block for the formation of reverse micelles, functioning as dye carriers for cotton fabric dyeing. The study optimized ten dyeing parameters and compared the properties of SAE-dyed samples with water-dyed samples. The results show that SAE-dyed samples have better performance than water-dyed samples.
This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters were optimised, by a one-factor-at-a-time approach, namely: (i) effect of colour fixation agent; (ii) surfactant-to-water mole ratio; (iii) surfactant-to-co-surfactant mole ratio; (iv) volume of soda ash; (v) volume of dye; (vi) solvent-to-cotton ratio; (vii) dyeing temperature; (viii) dyeing time; (ix) fixation time; (x) soda-ash-to-cotton ratio. The colour properties, fastness properties and physical properties of SAE-dyed samples were experimentally compared with the conventional water-dyed samples. The optimised condition was found when SAE samples were dyed as follows: (a) 1:20 surfactant-to-water ratio; (b) 1:8 surfactant-to-co-surfactant ratio; (c) 10:1 solvent ratio; (d) 40 min dyeing time; (e) 60 min fixation time; and (f) 70 degrees C dyeing and fixation temperature. The results showed that SAE-dyed samples have better colour strength, lower reflectance percentage and comparable levelness, fastness and physical properties than that of water-dyed samples. SEM images revealed that the dyed cotton fibres had no severe surface damage caused by an SAE-based reverse micellar dyeing system. The TEM image depicts that the reverse micelle was of nanoscale, spherical-shaped and had a core-shell structure, validating the presence of reverse micelle as a reactive dye carrier and the potential of an SAE-based reverse micellar system for dyeing of cotton fabrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available