4.7 Article

Environmental Impacts Assessment in Suspension PVC Production Process Using Computer-Aided Process Engineering

Journal

POLYMERS
Volume 15, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/polym15132902

Keywords

polymers; sustainability; PVC; environmental analysis; computer-aided process engineering

Ask authors/readers for more resources

The increasing environmental regulations and agreements in the chemical industry have led to the need to adapt processes to more intelligent production in order to achieve sustainable operation. The environmental assessment of the suspension PVC production process using the waste reduction algorithm (WAR) revealed that the process transforms raw materials with high impacts into substances with lower potential environmental impact (PEI). However, the process still generates high PEI due to intensive energy consumption and the emission of toxic substances and greenhouse gases. The evaluation also showed that natural gas is the most suitable fuel for reducing environmental impacts.
The new demands for sustainable operation in the chemical industry due to increasing environmental regulations and agreements have generated the need to adapt existing processes to more intelligent production. The plastics sector is in a complex position due to its contribution to economic development and the climate crisis. Therefore, environmental assessment has become an important tool due to the benefits it provides by quantifying the environmental performance of processes, allowing it to balance operational and environmental needs. Polyvinyl chloride (PVC) is one of the most globally used polymers thanks to its resistance, flexibility, and cost-effectiveness. The polymer is synthetized by suspension polymerization, which is characterized by high productivity and controllability. However, it presents problems associated with intensive energy consumption and the emission of toxic substances and greenhouse gases. Therefore, an environmental assessment of the suspension PVC production process was performed using the waste reduction algorithm (WAR). The potential environmental impact (PEI) was quantified using the generation rate and the output velocity for four cases and three different fuels. It was found that the process transforms raw materials with high impacts, such as VCM, into substances with lower PEI, such as PVC. However, the process has a high generation of PEI due to the effects of energy consumption (-2860, -2410, 3020, and 3410 for cases 1-4, respectively). The evaluation of the toxicological impacts shows that the ATP category is the only one that presents a positive generation value (75 PEI/day); the product contributes to the formation and emission of impacts. The atmospheric categories showed that the energy consumption of the process is the most critical aspect with a contribution of 91% of the total impacts emitted. The AP and GWP categories presented the highest values. It was determined that the most suitable fuel is natural gas; it has lower impacts than liquid and solid fuels (coal). Additionally, it can be concluded that the PVC production process by suspension is environmentally acceptable compared to the polyethylene or polypropylene processes, with output impacts 228 and 2561 times lower, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available