4.7 Article

Enhancing Dielectric Properties, Thermal Conductivity, and Mechanical Properties of Poly(lactic acid)-Thermoplastic Polyurethane Blend Composites by Using a SiC-BaTiO3 Hybrid Filler

Journal

POLYMERS
Volume 15, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/polym15183735

Keywords

thermoplastic polyurethane; polylactic acid; thermal conductivity; dielectric constant

Ask authors/readers for more resources

A composite of polymer blends, consisting of thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA), was fabricated with the addition of BaTiO3-SiC particles. BaTiO3 was used to improve the dielectric properties of the composite, while SiC enhanced the thermal conductivity. Surface modifications of BaTiO3 and SiC particles were conducted to improve their compatibility with the polymer matrix. The resulting composites showed improved thermal stability and enhanced thermal conductivity.
A composite of polymer blends-thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA)-and BaTiO3-SiC was fabricated. BaTiO3 particles were used to improve the dielectric properties of the composite materials, whereas SiC was used to enhance thermal conductivity without altering the dielectric properties; notably, SiC has a good dielectric constant. The surfaces of the filler particles, BaTiO3 and SiC particles, were activated; BaTiO3 was treated with methylene diphenyl diisocyanate (MDI) and SiC's surface was subjected to calcination and acid treatment, and hybrid fillers were prepared via solution mixing. The surface modifications were verified using Fourier transform infrared spectroscopy (the appearance of OH showed acid treatment of SiC, and the presence of NH, CH2, and OH groups indicated the functionalization of BaTiO3 particles). After the extruded products were cooled and dried, the specimens were fabricated using minimolding. The thermal stability of the final composites showed improvement. The dielectric constant improved relative to the main matrix at constant and variable frequencies, being about fivefold for 40% BaTiO3-SiC-TPU-PLA composites. Upon inclusion of 40 wt.% MDI functionalized BaTiO3-SiC particles, an improvement of 232% in thermal conductivity was attained, in comparison to neat TPU-PLA blends.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available