4.7 Article

Phosphonate poly(vinylbenzyl chloride)-Modified Sulfonated poly(aryl ether nitrile) for Blend Proton Exchange Membranes: Enhanced Mechanical and Electrochemical Properties

Journal

POLYMERS
Volume 15, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/polym15153203

Keywords

blend proton exchange membranes; phosphorylated poly(vinylbenzyl chloride); proton conductivity

Ask authors/readers for more resources

Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC). The chemical complexation interaction between the phosphoric acid and sulfonic acid groups in the PPVBC-SPAEN system resulted in BPEMs with reduced water uptake and enhanced mechanical properties. The proton conductivity of the BPEMs in the through-plane direction was significantly enhanced due to the introduction of phosphoric acid groups.
Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC) and named as SPM-x%, where x refers to the proportion of PPVBC to the weight of SPAEN. The chemical complexation interaction between the phosphoric acid and sulfonic acid groups in the PPVBC-SPAEN system resulted in BPEMs with reduced water uptake and enhanced mechanical properties compared to SPAEN proton exchange membranes. Furthermore, the flame retardancy of the PPVBC improved the thermal stability of the BPEMs. Despite a decrease in ion exchange capacity, the proton conductivity of the BPEMs in the through-plane direction was significantly enhanced due to the introduction of phosphoric acid groups, especially in low relative humidity (RH) environments. The measured proton conductivity of SPM-8% was 147, 98, and 28 mS cm(-1) under 95%, 70%, and 50% RH, respectively, which is higher than that of the unmodified SPAEN membrane and other SPM-x% membranes. Additionally, the morphology and anisotropy of the membrane proton conductivities were analyzed and discussed. Overall, the results indicated that PPVBC doping can effectively enhance the mechanical and electrochemical properties of SPAEN membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available