4.6 Article

Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2023MS003793

Keywords

hydrometeorology; flood; rain-on-snow; Earth system model; extremes; regionally refined mesh

Ask authors/readers for more resources

The 1997 New Year's flood in California, driven by an atmospheric river and snowmelt, was the most costly flood in the state's history. This study recreates the flood using a regional Earth system model and evaluates the performance of different resolution grids and forecast lead times. The findings provide insights into the causes of extreme events and the importance of resolution in representing reservoir inflows.
The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California-focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time-series and causal analysis frameworks are used to examine runoff sensitivities state-wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time-series shape, than forecast lead time, 2-to-4 days prior to the 1997 flood onset.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available