4.6 Article

Disconnectome associated with progressive white matter hyperintensities in aging: a virtual lesion study

Journal

FRONTIERS IN AGING NEUROSCIENCE
Volume 15, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2023.1237198

Keywords

white matter hyperintensities; disconnectome; aging; brain network; diffusion tensor imaging; magnetic resonance imaging

Ask authors/readers for more resources

This study estimated changes in the structural connectome caused by age-related white matter hyperintensities (WMH) using a virtual lesion approach. The results showed that WMH led to disruptions in multiple brain connections with increasing age, which may contribute to cognitive and sensorimotor decline.
ObjectiveWhite matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach.MethodsHigh-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction.ResultsDisconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's.ConclusionChanges in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available