4.8 Review

Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide

Journal

NANO TODAY
Volume 11, Issue 3, Pages 373-391

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2016.05.007

Keywords

Carbon dioxide; Electrochemical reduction; Energy conversion; Nonprecious metals; Nanostructures

Funding

  1. Japanese-Taiwanese Cooperative Program of the Japan Science and Technology Agency (JST)
  2. The Canon Foundation
  3. Grants-in-Aid for Scientific Research [15F15766] Funding Source: KAKEN

Ask authors/readers for more resources

Electrochemical reduction of carbon dioxide powered by renewable electricity represents a promising solution for energy and environmental sustainability. To enable this technology, active and selective catalysts must be developed. Noble metals exhibit excellent activity but are hampered by their low abundance and high cost. Thus, searching for efficient nonprecious metal catalysts for practical applications is vital. In this review, the recent progress on nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide is summarized. These catalysts are classified into five categories: metals, partially oxidized metals, metal oxides and sulfides, doped carbons, and organic frameworks. The areas of focus are material synthesis, structure and components, catalytic performance, and reaction mechanisms. Several important factors that affect activity, such as particle size, interface strain, grain boundary, crystal facet, oxidation state, heteroatom configuration, and organic hybrid, are discussed. Finally, some perspectives are provided for future developments and directions of the synthesis and functionalization of nonprecious metal catalysts, with emphasis on the potential advantages of nanoporous materials for carbon dioxide reduction. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available