4.8 Article

Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials

Journal

NANO LETTERS
Volume 16, Issue 6, Pages 3809-3816

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b01218

Keywords

Organic-inorganic perovskite; polaron; photovoltaic; cation rotations

Funding

  1. LANL LDRD program
  2. National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]
  3. Cellule Energie du CNRS (SOLHYBTRANS Project)
  4. University of Rennes 1 (Action Incitative, Defis Scientifique Emergents)
  5. Fondation d'entreprises banque Populaire de l'Ouest under Grant PEROPHOT
  6. Center for Functional Nanomaterials, US DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]

Ask authors/readers for more resources

Solution-processed organometallic perovskites have rapidly-developed into atop-candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovsltite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on, the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more charge transport phenomena. Here we report the results-from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures.;Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively.: In the MAPbI(3) (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies, suggest appearance of small polarons in organometallic perovskite materials. The fad that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create :and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)(2)) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available