4.8 Article

Swimming Microrobot Optical Nanoscopy

Journal

NANO LETTERS
Volume 16, Issue 10, Pages 6604-6609

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b03303

Keywords

Microrobot; scanning; biological imaging; nanoscale propulsion; microlens; super-resolution

Funding

  1. Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-13-1-0002, HDTRA1-14-1-0064]
  2. IRG Award from Kavli Institute for Brain and Mind
  3. China Scholarship Council (CSC)
  4. National Science Foundation [ECCS-1542148]

Ask authors/readers for more resources

Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for sub diffraction imaging, The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a, new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as, illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available