4.8 Article

Overcoming the Fundamental Barrier Thickness Limits of Ferroelectric Tunnel Junctions through BaTiO3/SrTiO3 Composite Barriers

Journal

NANO LETTERS
Volume 16, Issue 6, Pages 3911-3918

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b01418

Keywords

Ultrathin ferroelectric film; ferroelectric tunnel junction; tunneling electroresistance; composite barrier; pulsed laser epitaxy

Funding

  1. Research Center Program of IBS (Institute for Basic Science) in Korea [IBS-R009-D1]

Ask authors/readers for more resources

Ferroelectric tunnel junctions (FTJs) have attracted increasing research interest as a promising Candidate for nonvolatile memories. Recently, significant enhancements Of tunneling electroresistance (TER) have been realized through modifications of electrode materials. However, direct control of the FTJ performance through modifying the tunneling barrier has not been adequately explored. Here, adding a new direction to FTJ research, we fabricated FTJs with BaTiO3 single barriers (SB-FTJs) and BaTiO3/SrTiO3 composite barriers (CB-FTJs) and reported a systematic study of FTJ performances by varying the barrier thicknesses and compositions:, For the SB-FTJs, the TER is limited by pronounced leakage current for ultrathin barriers and extremely small tunneling current for thick barriers. For the CB-FTJs, the extra SrTiO3 barrier provides an additional degree of freedom to modulate the barrier potential and tunneling behavior. The resultant high tunability can be utilized to overcome the barrier thickness limits and enhance the overall CB-FTJ performances beyond those of SB-FTJ. Our results reveal a new paradigm to manipulate the FTJs through functionalities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available