4.8 Article

Growth Mechanism and Morphology of Hexagonal Boron Nitride

Journal

NANO LETTERS
Volume 16, Issue 2, Pages 1398-1403

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b04874

Keywords

Hexagonal boron nitride; Wulff construction; morphology; crystal growth; kinetics; density functional theory calculations

Funding

  1. Department of Energy, BES Grant [DE-SC0001479]
  2. ressearch fund of SKL-MCMS in NUAA [MCMS-0415K01]
  3. U.S. Department of Energy (DOE) [DE-SC0001479] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Hexagonal boron nitride (h-BN) sheet is a structural analogue of graphene, yet its growth mechanism has been rarely studied, as complicated by its binary composition. Here, we reveal an atomistic growth mechanism for the h-BN islands by combining crystal growth theory with comprehensive first principles calculations. The island shapes preferred by edge equilibrium are found to be inconsistent with experimental facts, which is in contrast to previous common views. Then the growth kinetics is explored by analyzing the diffusion and docking of boron and nitrogen atoms at the edges in a step-by-step manner of the nanoreactor approach. The determined sequence of atom by-atom accretion reveals a strong kinetic anisotropy of growth. Depending on the chemical potential of constituent elements, it yields the h-BN shapes as equilateral triangles or hexagons, explaining a number of experimental observations and opening a way for the synthesis of quality h-BN with controlled morphology. The richer growth kinetics of h-BN compared to graphene is further extendable to other binary two-dimensional materials, notably metal dichalcogenides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available