4.7 Article

Improvement of thermal-stability of chondroitinase ABCI immobilized on graphene oxide for the repair of spinal cord injury

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-45555-9

Keywords

-

Ask authors/readers for more resources

This study immobilized cABC I on graphene oxide (GO) to enhance the enzyme's stability and delivery efficiency. The immobilized enzyme had a greater Km and a lower Vmax value compared to the free enzyme, and showed improved stability at different temperatures.
Spinal cord injury healing has been shown to be aided by chondroitinase ABC I (cABCI) treatment. The transport of cABCI to target tissues is complicated by the enzyme's thermal instability; however, cABCI may be immobilized on nanosheets to boost stability and improve delivery efficiency. This investigation's goal was to assess the immobilization of cABC I on graphene oxide (GO). for this purpose, GO was produced from graphene using a modified version of Hummer's process. the immobilization of cABC I on GO was examined using SEM, XRD, and FTIR. The enzymatic activity of cABC I was evaluated in relation to substrate concentration. The enzyme was then surface-adsorption immobilized on GO, and its thermal stability was examined. As compared to the free enzyme, the results showed that the immobilized enzyme had a greater Km and a lower Vmax value. The stability of the enzyme was greatly improved by immobilization at 20, 4, 25, and 37 degrees C. For example, at 37 degrees C, the free enzyme retained 5% of its activity after 100 min, while the immobilized one retained 30% of its initial activity. The results showed, As a suitable surface for immobilizing cABC I, GO nano sheets boost the enzyme's stability, improving its capability to support axonal regeneration after CNC damage and guard against fast degradation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available