4.8 Article

Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition

Journal

NANO LETTERS
Volume 16, Issue 5, Pages 3022-3028

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b05292

Keywords

2D boron; Dirac cones; graphene-like structure; particle swarm optimization; density functional theory

Funding

  1. Australian Research Council
  2. Australian Research Council [DP130102420]
  3. CSIRO

Ask authors/readers for more resources

Recently, partially ionic boron (gamma-B-28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature 2009, 457, 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B-2 atom pairs with the P6/mmm space group and six atoms in the unit cell and has lower energy than the previously reported alpha-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac Fermions due to the significant charge transfer between the graphene-like plane and B-2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (v(f)) as high as 2.3 x 10(6) m/s, which is even higher than that of graphene (0.82 x 10(6) m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available