4.8 Article

Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction

Journal

NANO LETTERS
Volume 16, Issue 9, Pages 5792-5797

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b02527

Keywords

Two-dimensional materials; MoS2; WSe2; valleytronics; spin injection; spin transport

Funding

  1. Swiss National Science Foundation [153298]
  2. European Research Council (ERC) [682332]
  3. Marie Curie ITN network MoWSeS [317451]
  4. EC under the Graphene Flagship [604391]

Ask authors/readers for more resources

The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within. the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available